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Abstract
Let k be a successor cardinal. Using the theory of coherent conditional probability
associated with de Finetti (1974) and Dubins (1975), we show that each probability
that is not k-additive (but is A-additive if A < k) has coherent conditional
probabilities that fail to be conglomerable in a partition of cardinality k. This
generalizes our (1984) result, where we established that each finite but not
countably additive probability has coherent conditional probabililties that fail to be
conglomerable in some countable partition.

Key Words: x-additive probability, non-conglomerability, coherent conditional
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1. Introduction. Consider a finitely, but not necessarily countably additive
probability P(-) defined on a sigma-field of sets &. LetB,C,D,E,F,G € &, withB=J
and FNG=.
Definition. A coherent conditional probability function P(- | B) satisfies the following
three conditions:

(1) P(CUD|B)=P(C|B)+P(D|B), whenever CN D = J;

(i) PMB|B)=1
Moreover, following de Finetti (1974) and Dubins (1975), in order to regulate
conditional probability given a non-empty event of unconditional or conditional
probability 0, we require the following.

(iii) P(ENF|G)=P(E|FNG)P(F|G).

This account of coherent conditional probability is not the usual theory from
contemporary Mathematical Probability. It differs from the received theory of
Kolmogorovian regular conditional distributions in four ways:

1. The theory of regular conditional distributions requires that probabilities
and conditional probabilities are countably additive. The de Finetti/Dubins
theory of coherent conditional probability require only that probability is
finitely additive. In this paper, we bypass this difference by exploring
countably additive coherent conditional probabilities.

2. When P(B) = 0 and B is not empty, a regular conditional probability given B is
relative also to a sub-sigma field # C &, where B € 4 In the theory of
coherent conditional probability, P( - | B), depends solely on the event B and
not on any sub-field that embeds it. Example 2, which we present in Section
4 after Lemma 3, illustrates this difference.
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3. Some countably additive probabilities do not admit regular conditional
distributions relative to a particular sub-sigma field, even when both sigma-
fields are countably generated. (See Corollary 1 in our [2001].) In contrast,
Dubins (1975) establishes the existence of full coherent conditional
probability functions: where, given a set W of arbitrary cardinality, a
coherent conditional probability is defined with respect to each non-empty
element of its powerset, i.e.,, Zis the powerset of W. Hereafter, we require
that each probability function includes its coherent conditional probabilities
given each non-empty event B € & However, we do not require that Zis the
powerset of the state-space for P.

4. Our focus in this paper is a fourth feature that distinguishes the de
Finetti/Dubins theory of coherent conditional probability and the
Kolmogorovian theory of regular conditional probability. This aspect of the
difference involves conglomerability of conditional probability functions.

Let E € 3 let N be an index set and let w = {h,: v € N} be a partition of the sure event
where the conditional probabilities, P(E | h,), are well defined for each v € N.

Definition: The conditional probabilities P(E | h,) are conglomerable in & provided
that, for each event E € #and arbitrary real constants ki and kz,

ifki <P(E | h,) =kz foreachv €N, then k1 < P(E) < ka.

In our (1984) we show that if P is merely finitely additive (i.e., if P is finitely but not
countably additive) with coherent conditional probabilities, then P fails
conglomerability in some countable partition. That is, for each merely finitely
additive probability P there is an event E, an € > 0, and a countable partition 7 = {hx:
n=1, ..}, where P(E) > P(E | hn) + ¢ for each h, E m.

The following illustrates a failure of conglomerability for a merely finitely additive
probability P in a countable partition @ = {hn: n €{1, 2, ...}}, where each element of
the partition is not null, i.e., P(h,) > 0 for each n €{1, 2, ...}. Then, by both theories of
conditional probability, P(E | hn) = P(EN hn)/P(hy) is well defined. Thus, the failure
of conglomerability in this example is due to the failure of countable additivity,
rather than to a difference in how conditional probability is defined.

Example 1 (Dubins, 1975): Let the sure event W ={(i,n): i€ {1, 2}and n € {1, 2, ...}}
and & be the powerset of W. LetE = {{1,n}: n €{1, 2, ...}} and hn = {{1,n}, {2, n}},
and partition & = {hn: n €{1, 2, ...}}. Define P({i,n}) =1/2™1ifi=1,P({i,n}) =0 ifi=
2,and P(E) = 0.5. So P is merely finitely additive over E¢. Hence, P(h,) = 1/271>0
foreachn€{1, 2, ...}. Then P is not conglomerable in & as:

P(E¢| hn) =P(E<M hn)/P(ha) = 0, for eachn €{1, 2, ...}, whereas P(E) = 0. 5.y xample 1
In our [1996], we discuss this example in connection with the value of information.
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In the appendix to our (1986) we show that for a continuous, countably additive
probability defined on the continuum, and assuming coherent conditional
probabilities rather than regular conditional distributions, then non-
conglomerability results by considering continuum-many different partitions of the
continuum. These alternative partitions are generated by sets of equivalent (non-
linearly transformed) random variables. Conglomerability cannot be satisfied in all
the partitions. Here we generalize that result to k-additive probabilities.

In the following definition, let o, §, and y be ordinals and k a cardinal.
Definition: A probability P is k-additive if, for each increasing y-sequence of

measurable events {E,: o <y =<k}, where E, € Eg whenever a < <y, then

P(U(X<Y E(x) = Supa<y P(E(x)'
That is, with y < k, P is k-additive provided that probability is continuous from below
over y-long sequences that approximate events from below. This agrees with the

usual definition of countable additivity; let k = X,

Say that P is not x-additive when, for some event E and increasing y-sequence that

approximates E from below, P(U,,_, E;) > sup,, ., P(E,).
If P is k-additive for each cardinal k, then call P perfectly additive.

Consider a countably additive probability P that is not k-additive for some successor

cardinal k = A*. Here we show (in Section 4) the main Proposition of this paper:

* P fails to be conglomerable in some partition of cardinality k.
Rather than thinking that non-conglomerability is an anomalous feature of finite but
not countably additive probabilities, and arises solely with finitely but not countably
additive probabilities in countable partitions, here we argue for a different
conclusion: Let P be a coherent probability. Non-conglomerability of its coherent

conditional probabilities {P(E |h,): v € N} occurs in a partition & = {h,: v E N}
whose cardinality || = kK matches the k-non-additivity of P.

2. Other structural assumptions for the Proposition. Since the cardinals below a
given cardinal form a well-ordered set, we consider the least cardinal k for which P
is not k-additive. And since we assume that P is countably additive, then k is some
uncountable cardinal - unless P is perfectly additive. Thus, assume that for an
uncountable cardinal k, P is not k-additive but is A-additive for each cardinal A < k.
Also, we assume that P includes its coherent conditional probability distributions
and these, too, are A-additive for each A < k.

Moreover, we take the measure completion of P, so that each subset of a P-null event

is measurable. That is, if E is measurable with P(E) = 0, then each subset of E also is
measurable. This assumption provides for a rich space of measurable events while
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stopping short of requiring P to be defined on a powerset, which otherwise would
require K to be greater than a weakly inaccessible cardinal, by Ulam’s [1930] result.

Under these assumptions, let P be defined on a measurable space <W, &>, where &

includes each of the points of the space, W = {w: a < x}, with a ranging over all
ordinals less than k. That is, without loss of generality, assume W has cardinality k
and where if a measurable event E is null, i.e., whenever P(E) = 0, then #includes
each subset of E.

Since P is not perfectly additive, it follows that k is a regular cardinal: it has
cofinality k. Otherwise, k is singular with cofinality(k) = A <. Then, using this A-
sequence which is cofinal in k, as P is A-additive for each A <k, P would be k-additive
as well. In addition, for the proof of Lemma 4, below, we assume that k is not
inaccessible, i.e., we avoid the case that « is a regular limit cardinal, whose existence
is independent of ZFC. We make one additional structural assumption on # that
depends upon a linear order | over special sets of points (called tiers) that is
defined in Section 3.

3. Tiers of points. The proof of the main Proposition is based on the structure of a
linear order over equivalence classes (called tiers) defined by the following relation
between pairs of points in W.

Definition: Consider the relation, ~, of relative-non-nullity on pairs of points in W.

That is, for two points, w,, = wg, they bear the relation w, ~ wg provided that

0< P({W(x}l {Wou Wg }) <1
We make ~ into an equivalence relation by stipulating that, for each pointw w~w.

Lemma 1: ~is an equivalence relation.

Proof: Only transitivity requires verification. Assume wi ~wz~ ws. That is, assume
0 < P({w1} | {w1, wz}), P({w2}| {wz, w3}) < 1. Then by condition (iii) of coherent
conditional probability:

P({w1}| {w1, w2, w3}) = P({w1}| {w1, w2}) P({w1, w2} | {w1, w2, w3}). Similarly,

P({ws}| {w1, w2, ws}) = P({ws} | {w2, ws}) P({wz, w3} [ {w1, w2, w3}).

Now argue indirectly by cases.

o IfP({W1} | {W1, W3}) = 0, then P({Wl} | {W1, w2, W3}) =0 and
P({w1, w2} | {w1, w2, w3}) = 0, since by assumption P({w1} | {w1, w2}) > 0. Then
P({wz}| {w1, w2, w3}) = 0 = P({wz} | {w2, wz}), which contradicts wz~ ws.

o IfP({W1} | {W1, W3}) = 1, then 0 = P({W3} | {W1, W3}) = P({W3} | {W1, w2, W3}).
Then 0 = P({Wz, W3} | {W1, w2, Wg}), since 0 < P({W3}| {Wz, Wg}).
So, 0 = P({wz}| {w1, w2, w3}) = P({wz} | {w1, w2}), which contradicts wi ~ wo.

Hence 0 < P({w1} [ {w1, w3}) <1, as required. yremma1
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Definition: The equivalence relation ~ partitions W into disjoint tiers t of relative
non-null pairs of points.

For each pair of points {w1, wz} that belong to different tiers, wi € ti (i = 1, 2), 11 = 12,
then P({w1} | {w1, w2}) €{0,1}.

If P({wz} | {w1, w2}) = P({ws} | {wz, w3}) = 1, then P({w3} | {w1, w3}) = 1. Thus, the
tiers are linearly ordered by the relation %, defined as:

Definition: t1 | 12 if for each pair {wi, w2}, wi €1i (i=1, 2), P({w2} | {w1, w2}) = 1.
Since the reverse ordering also is linear, we express this as:

Definition: T2 | T1 if for each pair {wi, w2}, wi €1 (i=1, 2), P({w2} | {w1, w2}) =1, i.e,
if and only if t1 1 T2.

As a final structural assumption, we assume that each tier, T, belongs to the algebra
%, and that the set of tiers below (or above) a tier in the linear order also belong to &,

i.e,, the “intervals” {t’: ©' | T} and {t": v’ 1 t} are measurable as well.

4. The Main Proposition.
Proposition: Let <W, &, P> be a measure space satisfying the following six structural

assumptions:

* |W]|=xand x is an uncountable successor cardinal.

* Each point win W belongs as a singleton to 8, {w} € &.

* Tiers of points, and their intervals under the linear order 1 belong to &.

* Pisacomplete measure, i.e., each subset of a P-null event belongs to &.

* P admits coherent conditional probabilities given non-empty B € &.

* Pisnotk-additive, but P and all its conditional probability functions are

v-additive for each y < k.

Then, there is a x-sized measurable partition t and a measurable event E where P
fails to be conglomerable, i.e., there exists an ¢ > 0 where

P(E) > P(E | h) + € for each he TT. & Proposition

The proof of the Proposition proceeds through several lemmas, which occupy the
rest of this section. The first lemma provides a sufficient condition that a probability
P is not k-additive.

Lemma 2: Consider a measurable A-partition of an event E, mg = {h: a <A =x} -ie,

where U, h, =E and h, N hg =& whenever o = . If P(E) > 2, _; P(h,), then P is
not k-additive.

Proof: LetEo = ho, E,,; = E, U h, for successor ordinals, and E, =h, U, ., E, for
limit ordinals y <A. So, E=U,; E,. Clearly, E;, C Eg whenever a < <A. By
assumption, P(E) > 2 _; P(h,). Let <« be the least ordinal such that P(U,_g h,) >

Z4<p P(hy). Thenalso P(U, g E) > sup,p P(Ey), and so P is not k-additive. yLemma
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If P has discrete mass on some points, these form a top tier with cardinality less than
or equal to Xo. Thatis, let t* = {w: P({w}) > 0}. Evidently, by finite additivity, |[t*| =

No. Since P is countably additive, P(t*) = Ywes P({w}). By the assumption that P is
not k-additive, then P(t*) < 1, i.e,, P is not perfectly additive. If t*= & then for each
other tier, T = t* 1t 1 t*. The proof of the main Proposition proceeds by considering
two cases, depending upon whether some tier t (t = t*) is non-null, P(t) > 0 (Lemma
3), or whether each tier T (t = t*) is null, P(t) = 0 (Lemma 4).

Lemma 3: If there exists some tier t = t* with P(t) > 0, then P is not conglomerable.
Proof: Since P({w}) = 0 whenever w & t*, because P(t) > 0 and P is A-additive for
each cardinal A <, then |t| =k (Lemma 2). Partition t into two disjoint sets, To N
T1 = & with To U T1 = ; each with cardinality , |To| = |T1| = x; and label them so
that P(To) < P(T1)=d > 0.

We identify a partition of cardinality k, which we write as w = {h,: o <k} U {h'g: f <
y <}, where {h,: a <x} N{h's: p <y =<«} =4, and where P(T:1 | h) <d/2 for each h
€ n. Possibly the second set, {h'g: p <y <k}, is empty, as we explain below. Each

element h € wwis a finite set. Each element h contains exactly one point from Tj, and
some positive finite number of points from Ty, selected to insure that P(T1 | h) <d/2.

If the second set, {h'g: p <y <k}, is not empty, each h'g = {wg} is a singleton with wy

€W -Ti. So,if{h's: p <y =k} isnotempty, then P(T1 | h'g) = 0 for each h'g. Next
we establish the existence of such a measurable partition .

By the Axiom of Choice, consider a k-long well ordering of T, {w1, wz, .., wg, ... } with
ordinal indices 0 < § < k. We define wt by induction. As each of To, T1 is a subset of
the same tier T, consider the countable partition of T into sets

pin={wETo: (n-1)/n = P({w1} [{w1, w}) < n/(n+1)}, forn=1,2 ... .
Observe that U, p1n = To. Since |To| =k = X1, by the pigeon-hole principle, consider
the least n* such that p1n+is infinite. Let U1 = {w1, ..., Wwim} be m-many points
chosen from p1n«. Note that P({w1} | U1 U {w1}) = n*/(m+n*). Choose m
sufficiently large so that n*/(m+n*) <d/2. Let h1 = U1 U {w1}.

For ordinals 1 < § <k, define hg, by induction, as follows. Denoting To,1 = To, let To,g =
To - (Up<q<p ho)- Since, for each o, 0 < a < §, by hypothesis of induction h,, is a finite
set, then |Uy,g ho| <. So, [Tog| =K. Since Tog is a subset of 1, just as above,
consider the countable partition of To into sets

pgn = {WETog: (n-1)/n = P({wg} {wp, w}) < n/(n+1)}, forn=1,2, ...
Again, by the pigeon-hole principle, consider the least integer n* such that pgn- is

infinite. Let Ug = {wp,, ..., wgm} be m-many points chosen from pg »+. Note that
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P({wg} | Ug U {wg}) = n*/(m+n*). Choose m sufficiently large that n*/(m+n*) <d/2.

Observe that T1 C Uy g, hg and that for each 0 <3 <, P(T1 | hg) <d/2. In order to
complete the partition x, consider a catch-all set with all the remaining points wg €
W - Ugp« hg. Note that each such wy is not a member of T, if any such points
exist. Add each such point {wg} = h'g as a separate partition element of t. Thus, if
there are any such points, P(T1 | h'g) = 0 <d/2. Hence, P is not conglomerable in xt
as P(T1) =d > 0, yet for each h €=, P(T1 | h) < d/2.4Lemma 3

Next, we illustrate Lemma 3 and also a difference between the de Finetti/Dubins
theory of coherent conditional probability used in this paper and the theory of
regular conditional distributions from the received (Kolmogorovian) theory of
Mathematical Probability.

Example 2: Let <W, &> be the measurable space of Lebesgue measurable subsets of
the half-open unit interval of real numbers: W = [0,1) and #is its algebra of
Lebesgue measurable subsets. Let P be the uniform, countably additive probability
with constant density function f{w) = 1 for each real number 0 =sw <1, and f(w) =0

otherwise. So P({w}) = 0 for each w € W. Evidently P is not =2%0 additive,

because W is the union of 2 NO-many null sets: apply Lemma 2 to a well order on W.

As an illustration of Lemma 3, use the uniform density function fto identify
coherent conditional probability given finite sets as uniform over those finite sets, as
well. Thatis, when F = {wy, ..., wi} is a finite subset of W with k-many points, let

P( - | F) be the perfectly additive probability that is uniform on these k-many points.
These conditional probabilities create a single tier t = W, as P({w1} |[{w1, wz}) = 0.5
for each pair of points in W.

Consider the two events E = {w: 0 = w < 0.9} and its complement with respect to W,
Ec¢={w: 0.9 <w< 1}, where P(E) = 0.9. Letg be the 1-1 (continuous) map between E
and Ec¢ defined by g(w) = 0.9 + w/9, for w € E. Consider the k-size partition of W by
pair-sets, © = {{w, g(w)}: w € E}. By assumption, P({w} | {w, g(w)}) = 1/2 for each
pair in . But then P is not conglomerable in .

The usual theory of regular conditional distributions treats the example differently.
We continue the example from that point of view. Consider the measure space <W,
&, P> as above. Let the random variable X(w)=w, so that X ~ U[0,1), X has the
uniform distribution on W. In order to consider conditional probability given the
pair of points {w, g(w)}, let g(X)=(X/9)+09 if0=<X<0.9

= 9(X-09) if09=X<1.
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Define the random variable Y(w) =X(w) + g(X(w)) - 0.9.
Observe that Y ~ U[0, 1.0). Also, note that Y is 2-to-1 between W and [0.0, 1.0). That
is Y =y is entails that either w = 0.9y or w = 0.1(y + 9).

Let the sub-sigma field ~#be generated by the random variable Y. The regular

conditional distribution relative to this sub-sigma field, P( & | #)(w), is a real-valued

function defined on W that is #measurable and satisfies the integral equation
JaP(B | 4)(w) dP(w) = P(A N B)

whenever A€ #and BE &

In our case, then P[B | 4| (w) almost surely satisfies:
P(X=0.9Y|Y)(w)=0.9

and P(X=0.1(Y+9.0) | Y)(w) = 0.1,
Thus, relative to the random variable Y, this regular conditional distribution assigns
conditional probabilities as if P({w} | {w, g(w)}) = 0.9 for almost all pairs {w, g(w)}
with 0 =w < 0.9. However, just as in the Borel “paradox” (Kolmogorov, 1933), for a
particular pair {w, g(w)}, the evaluation of P({w} | {w, g(w)}) is not determinate and
is defined only relative to which sub-sigma field # embeds it.

For an illustration of this last feature of the received theory of regular conditional
distributions, consider a different pair of complementary events with respect to W.
LetF={w: 0=w< 0.5} and Fe = {w: 0.5 =w < 1}. So, P(F) =0.5.
Let fX)=1.0-X if 0<X<1.

=0 if X=0.

Analogous to the construction above, let Z(w) = |X(w) - f(X(w))]|. So Z is uniformly
distributed, Z ~ U[0, 1), and is 2-to-1 from W onto [0, 1). Consider the sub-sigma
field #' generated by the random variable Z. Then the regular conditional
distribution P( & | #')(w), almost surely satisfies:

PX=05-Z/2|Z=0)(w) = 0.5
and PX=05+Z/2|Z=0)(w) = 0.5
and for convenience, P(X=0|Z=0)=P(X=0.5|Z=0)=0.5.

However, g(.09) =.91 =f{.09) and g(.91) =.09 = f{.91). Thatis, Y = 0.1 if and only if Z
= 0.82. So in the received theory, it is permissible to have P(w=.09 | Y=0.1) = 0.9
as evaluated with respect to the sub-sigma field generated by Y, and also to have
P(w=.09 | Z=0.82}) = 0.5 as evaluated with respect to the sub-sigma field

generated by Z, even though the conditioning events are the same event. j example 2

We resume the proof of the Proposition by turning to the second main case, Lemma
4, where each tier T (other than perhaps t*) is a P-null event. The proof of Lemma 4,
in particular the argument for subcase 2, is indirect. It involves considering a
sequence of partitions where, if P is conglomerable in each partition in the
sequence, that establishes that P is remote (with extreme values 0 or 1 only) on sets
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of tiers, i.e,, then P is a non-principal ultrafilter distribution on the measurable space
of the sets of tiers. Then, using a result of Chang/Kunen-Prikry, P fails to be A-
additive for some A < K, establishing the contradiction needed for the indirect
argument.

Lemma 4: If for each t = t*, P(t) = 0, then P is not conglomerable.

Proof: Assume for eacht=1* P(t) =0. Let T = {Ut: T = t*}. We have assumed that
P is not ¥ additive. So, P(T) > 0. And then the cardinality of the set of tiers is x =
|{t}|, as P is A-additive for each cardinal A < k.

Consider the linear orders | and | over the set of tiers, as defined above. By a
familiar result in set theory, either 1 or (exclusively) | is a well order of the set of
tiers, or (exclusively) there are two countable subsets L = {t's, .., T, ...} and M, =
{1, ..., Tn, ...} Of the set of tiers well ordered respectively as the natural numbers, (N,

<). Thatis, then elements of L| satisfy: T'm | T'n and elements of M, satisfy tm | tn
whenever n > m.

We complete the proof of Lemma 4 reasoning by these three sub-cases.

Sub-case 1: Suppose 1 is a well order, which we index with an initial segment of the
ordinals beginning with 1. Let 3 be the least ordinal in this well order such that

P(Ug<p To) > 0 and let R be this set of tiers, R = {t,: o < ). Then f is a limit ordinal

with |B| =, since P(t,) = 0 for each tier, and P is A-additive for each cardinal A < k.
Note that there is no greatest (last) element of R under 1. Partition the tiers in R
into those with successor-ordinal indices (S) and those with limit-ordinal indices
(L): Since |B| =, aregular cardinal, |S| = |L| = k.

Because each of S and L has cardinality ¥ and is cofinal in R, it is an elementary fact
that there exist a pair of injective functions f:US = UL and g:UL = US where

P({w} | {w, f(lw)}) = 0 and P({w} | {w, g(w)}) = 0, whenever w is in the domain,
respectively, of the function for g, i.e,, whenever w € US or w € UL, respectively.
That is, each of fand g maps an element of its domain into a distinct element of its
range belonging to a higher tier in the well order 1. In other words, f pairs points in
US with points in UL having a higher tier under 1. Likewise, g pairs points in UL
with points in US having a higher tier under 1.

For example, write each of S and L as a x-union of disjoint, cofinal sets: S=U__, S,
andL=U

L) is cofinal in S (respectively, L). Letfmap each tier T, € S whose index oisa

Ly where S, N Sg =1L, NLg = if a=p,andeachsetS, (respectively,

o<K

successor ordinal into elements of the set of tiers L , whose indices are limit ordinals
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greater than 0. Let g map each tier t; € L whose index A is a limit ordinal into

elements of the set of tiers S; whose indices are successor ordinals greater than A.

Use the functions fand g to create two K-size partitions, ity and g, similar in kind to
the partition of the Lemma 3, as defined below. Without loss of generality, when
considering f (respectively, g), index its domain - for fthat is the set of points w €
US (respectively for g, that is the set of points w € UL) - using an initial segment of
ordinals beginning with 1 running through k. That is, when considering f, write US

={wy, wy, .., W, ...} with 0 < a <, and similarly for g.

For each ordinal o, 0 < a <, define the partition element h, of s to be the pair-set
h, ={wg flw,)}. As before define the catch-all set: W - [US U Range(f)]. And as
before, if this set is non-empty add its elements as singleton sets h'g to create the

partition 5ty = {h, ..., h, ..} U {h'g}. Then for each h €z, P(S | h) = 0. In parallel
fashion, with respect to function g, define m; so that for each h € ny, P(L | h) = 0.
Since at least one of S or L is not a P-null set, that is since max{P(S), P(L)} >0, P is

not conglomerable in at least one of these two partitions, rtrand m. () sub-case 1

For each of the remaining two subcases within Lemma 4, we make use of the
following elementary result, which we label Lemma 5.

Lemma 5: Let each of U and V be a union of two disjoint sets of tiers, with P(V) > 0,
|U| =k, and with U entirely above V in the linear ordering of |, tiers. That s, for each
pairty C U and twCV, ty|tv. Then P is not conglomerable.

Proof: This is an easy cardinality argument. Because ty|tv, for each two points wy €
twC Uand wyEtwCV, P({wv} [{wu, wyv}) = 0. Since U and V have the same
cardinality, «, consider a 1-1 function to pair them. Let these pair-sets be the

partition elements, h, (for 0 < a < k) of a x-size partition, &, augmented by one
additional partition element, ho = W - (U U V), if ho is not empty. Then, for each h €

%, P(V|h) = 0, But P(V) > 0. Lemmas

The following example alerts the reader that sub-cases 1 and 2, where respectively
1 and | well order the set of tiers, are not sufficiently parallel to allow using the
proof of sub-case 1 for sub-case 2.

Example 3. Consider the case where W is countable. Then there cannot be a
countably additive probability P as in sub-case 1. Thatis, if W = {w1, wy, ..., wy, ...}
and each atom constitutes its own tier, P({wm}| {Wm, wn}) = 0 whenever m < n, then
P({wi}) =0,i=1, 2, .., contradicting the additivity of P. However, if as in sub-case 2,
P({wm} | {wm, wn}) = 1 whenever m < n then this well ordering of the tiers
corresponds to a perfectly additive probability P where P({w1}) = 1, and for each
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nonempty subset @ =S C W, P(E | S) = 1 if and only if E includes the minimal
element of S. Note that this probability, P, is remote as are all its conditional

probabilities. Thatis, P(S) and P(E | S) € {0,1}. y Example 3
As we show below, it is no coincidence that in sub-case 2 of Lemma 4, P is a remote
distribution on tiers.

Sub-case 2: Suppose |, is a well order of the set of tiers, each of which is P-null. The
reasoning begins similarly as for sub-case 1 but relies on results (Chang, 1967;
Kunen and Prikry, 1971) concerning descendingly incomplete ultrafilters.

We index the well order | with an initial segment of the ordinals greater than 0. Let
B be the least ordinal in this well order such that P(Uo<,<g T,) > 0 and let R be this

interval of tiers, R = {t: 0 < a < 3). Then f is a limit ordinal with |B| =, since P(t) =
0 for each tier in R, and P is A-additive for each cardinal A < k. Moreover, by Lemma

5, in order for P to be conglomerable, we may assume that = k. Note that there is
no last (least) element of R under |.

By the hypothesis of Lemma 4, and in the light of Lemma 5, in order for P to be
conglomerable, we may also assume that given an ordinal y, 0 <y <k, then

|Uo<oy Tal < k. Therefore, P(Uy ., To) = 0. So, for each ordinal o, 0 <a <x, P(R) =

P(U(x<y<1< Ty)'

In addition, unless P is non-conglomerable, P is remote on sets of tiers in R, i.e. for
each (measurable) subset Q of tiers of R, P(Q) € {0, 1}. This is established by an
indirect argument, as follows.

Let Q be a P-non-remote subset of tiers, i.e.,, 0 < P(Q) < 1. Then, also 0 < P(Q¢) < 1.
By the analysis in the previous paragraph, |Q| = |Q¢| = k and each set is cofinal in the
well order | on R. As subsets of the well order | we index each of Q and Q¢ by the

C
positive ordinals less than k. That is, write Q = {12: 0O<a<x}andQc = {TS :0<a<
Kk} where, for each 0 < a <, there exist ordinals o < §, o < & (with at least one

c
inequality strict) where t; =1 and 12 =15. We use the convenience of this

common indexing of Q and Q¢ by ordinals less than « in order to pair elements of Q
and Q¢ as follows.

LetV = {12 eQ: Tg { TSC}. That is, when 12 €V then 12 =Ttgand TSC= Tgand p < 0.
Likewise, when Tg € Q-V then 12 =tgand r§° =15and d < f.

Observe that P(Q N Ve | {t2,72}) = 0 whenever 12 € V. Andas P(Q | {12,731 =0
for 12 € Q-V, also we have P(Q N V¢ | {Tg , TSC}) =0 ifrg € Q-V. Hence, if P is
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conglomerable in the partition by pairs & = {{12 , T(?C}: 0 <a<x}thenP(QNVe)=0.
Since P(Q) = P(Q N V) + P(Q N V¢), we conclude that P(Q) = P(V) and so P(Q¢) =
P(Ve).

For convenience, index V by the positive ordinals less than k, V= {t¥ : 0 < a. < x}. Let

', denote that element of Q¢ with the same ordinal index as Ty, has in the well order

P _.Q r _ Q€
of Q. Thatis, if tp = T; thent', =75 .

Let h*o = {t: T |, T}}, which is the interval of tiers preceding tier ty. By the previous

analysis, for each ordinal o, 0 <a <%, P(R) = P(U, . T,)- Thus, P(h*o) =0, so P(Q)
= P(V) = P(V- h*o) and likewise, P(V¢) = P(Q¢) = P(V¢ - h*).

ForO<a<x,leth*, ={ty , T JUTEQ LT} tTh UT EQ: T, | T | Vst )
Observe that if t € h*, and t = Ty, then t), | t. Thatis, T}, is the lead element of h* ,
under the well order |. Hence, for each o, 0 < a <x, P({ty} | h*,} = 1. So, for each a

<x, P([Q¢ - h*o] | h*,) = 0. As* = {h*: a < k) partitions the set R, if P is
conglomerable in 7w*, then P(Q¢) = 0. This contradicts the supposition that 0 < P(Q) <
1. Therefore, if P is conglomerable in t*, P is remote on all sets of tiers in R. That s,
P is a non-principal ultrafilter probability on the algebra of tiers in T.

Next, for each a <k, consider the interval I, within R of tiers below T, in the
ordering |. I, ={t€R: 1, | T}. These form a x-long sequence of downward nested

intervals, I, O Ig whenever a < f§ <k, each of which satisfies P(I,) = P(R). But P(NI,)
= 0. So P is k-descendingly incomplete. By a result of Chang (1967) (strengthed by
Kunnen and Prikry, 1971 and reported here in an appendix), since x is a regular
successor cardinal, then P admits a A-descendingly incomplete sequence, for some A
< k. This contradicts the assumption that P is A-additive for each A < x. Hence, P is

not conglomerable in some partition previously identified.  sub-case 2

Sub-case 3: There are two countable sets of tiers L = {t'y, .., T, ..} and My = {x, ...,
Ty, ...} Well ordered respectively as the natural numbers, (N, <). That s, the

elements of L satisfy: T'm | T'n and elements of M, satisfy tTm 1 tn whenever n>m.
Combine these two sequences to form a single countable set ordered (either by 1 or
by |) as the combined negative and positive integers under their natural order.
That is, form a linearly ordered set of tiers with integer indices, T, fori= ... -n,
-(n-1), ...,-1,0,1, 2, ..., (n-1), n, .... By assumption for Lemma 4, each of these tiers
is a P-null set, and so is their union, which is countable.
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Use this null-set of tiers to define countably many intervals of tiers, = {t ER: 7i |
T | ti+1},for[=0,+/-1, +/-2,... Form a partition of R by adding the two extreme

intervals, [, ={t€R:ti | T, fori=1,2,..},and L ={tER:t | tj, fori=-1,-2, ... }.
By the Lemma 5, if P is conglomerable, then only one of these intervals is not null.
Call it the interval I*o. That is, P(R) = P(I*9). Thus P is remote on these countably

many intervals.

The linear order of tiers within the interval [*y is again one of the three types,
corresponding to subcases 1, 2, or 3. If [*o produces a linear order that is a well
order, corresponding to either subcase 1 or 2, complete the reasoning for subcase 3
by duplicating that for the respective subcase 1 or 2 applied to the interval I[*o. If the
linear ordering within I*p is also an instance of subcase 3, then repeat the reasoning
to produce a subinterval, [*; C [*o where P(R) = P(I*1). Continue in this fashion

(letting I*; = NI*g for § <A at limit ordinals A) until either subcase 1 or subcase 2
occurs, else there will be a y-long sequence of nested subintervals [*¢ D I*1 D [*;D ...

D I*,D.., where P(I* ) = P(R) for each a <y, where |y| = k. This will form a -

descendingly incomplete sequence as NI*, = &J. By appeal to the same result of
Chang/Kunnen-Prikry, there is a A-descendingly incomplete sequence, with A < k.

This contradicts the assumption that P is A-additive for each A <K. y subcase 3 and Lemma 4.

The Proposition is immediate from Lemmas 3 and 4.  proposition

5. Conclusion. Given a probability P that satisfies the six structural assumptions of
the Proposition, we show that non-conglomerability of its coherent conditional
probabilities is linked to the index of non-additivity of P. Specifially, as P is not k-

additive then there is a k-size partition & = {h,: v < x} where the coherent
conditional probabilities {P(- | h,)} are not conglomerable. Namely, there exists an

event E and a real number ¢ > 0 where, for each h, €x, P(E) >P(E | h,) +&.

This permits us to conclude that the anomalous phenomenon of non-
conglomerability is a result of adopting the de Finetti/Dubins theory of coherent
conditional probability instead of the rival Kolmogorovian theory of regular
conditional distributions, and not a result of the associated debate over whether
probability is allowed to be merely finitely additive rather than satisfying countable
additivity. Restated, our conclusion is that even when P is y-additive for each y <k, if
P is not k-additive and has coherent conditional probabilities, then P will experience
non-conglomerability in a k-sized partition. The received theory of regular
conditional distributions sidesteps non-conglomerabilithy by allowing conditional
probability to depend upon a sub-sigma field, rather than being defined given an
event.
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Appendix.
Let a, B, A, and « be infinite cardinals, 6 and y ordinals, and D an ultrafilter on a set .

Defn. D is a-descendingly incomplete if there are sets X5 € D (where 8 ranges over
all ordinals less than o) such that both

(i) for each pair of ordinals §, y withd <y <o, X5 2 X,,
and (11) ﬂé<a Xa = .

GCH abbreviates the Generalized Continuum Hypothesis: 2h =

Theorem (using GCH, Chang, 1967; without GCH, Kunen and Prikry, 1971)

(a) If A is aregular cardinal and D is A*-descendingly incomplete, then D is A-
descendingly incomplete.

(b) If x = cofinality(A) < A and ultrafilter D is A*-descendingly incomplete, then
either

(i) D is k-descendingly incomplete, or

(i)  Thereis an a < A such that D is 3-descendingly incomplete for all regular

B suchthata <f <A.
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